Locally Nilpotent Groups and Hyperfinite Equivalence Relations

نویسندگان

  • SCOTT SCHNEIDER
  • BRANDON SEWARD
چکیده

A long standing open problem in the theory of hyperfinite equivalence relations asks if the orbit equivalence relation generated by a Borel action of a countable amenable group is hyperfinite. In this paper we show that this question has a positive answer when the acting group is locally nilpotent. This extends previous results obtained by Gao–Jackson for abelian groups and by Jackson–Kechris–Louveau for finitely generated nilpotent-by-finite groups. Our proof is based on a mixture of coarse geometric properties of locally nilpotent groups together with an adaptation of the Gao–Jackson

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Topological Generators for Full Groups of Hyperfinite Pmp Equivalence Relations

We give an elementary proof that there are two topological generators for the full group of every aperiodic hyperfinite probability measure preserving Borel equivalence relation. Our proof explicitly constructs topological generators for the orbit equivalence relation of the irrational rotation of the circle, and then appeals to Dye’s theorem and a Baire category argument to conclude the genera...

متن کامل

Amenable Ergodic Actions , Hyperfinite Factors , and Poincaré Flows

1. Introduction. In this paper we announce the introduction of a new notion of amenability for ergodic group actions and ergodic equivalence relations. Amenable ergodic actions occupy a position in ergodic theory parallel to that of amenable groups in group theory and one can therefore expect this notion to be useful in diverse circumstances. Here we announce applications to hyperfinite factor ...

متن کامل

Countable abelian group actions and hyperfinite equivalence relations

An equivalence relation E on a standard Borel space is hyperfinite if E is the increasing union of countably many Borel equivalence relations En where all En-equivalence classs are finite. In this article we establish the following theorem: if a countable abelian group acts on a standard Borel space in a Borel manner then the orbit equivalence relation is hyperfinite. The proof uses constructio...

متن کامل

The Classification of Hypersmooth Borel Equivalence Relations

This paper is a contribution to the study of Borel equivalence relations in standard Borel spaces, i.e., Polish spaces equipped with their Borel structure. A class of such equivalence relations which has received particular attention is the class of hyperfinite Borel equivalence relations. These can be defined as the increasing unions of sequences of Borel equivalence relations all of whose equ...

متن کامل

Zeta Functions from Definable Equivalence Relations

We prove that the theory of the p-adics Qp, together with a set of explicitly given sorts, admits elimination of imaginaries. Using p-adic integration, we deduce the rationality of certain formal zeta functions arising from definable equivalence relations. As an application, we prove rationality results for zeta functions obtained by counting isomorphism classes of irreducible representations o...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2013